2.5 KB | 2529 chars
/*
[10216: Count Circle Groups](https://www.acmicpc.net/problem/10216)
Tier: Gold 4
Category: data_structures, graphs, graph_traversal, geometry, disjoint_set
*/
#include <bits/stdc++.h>
using namespace std;
#define for1(s, e) for(int i = s; i < e; i++)
#define for1j(s, e) for(int j = s; j < e; j++)
#define forEach(k) for(auto i : k)
#define forEachj(k) for(auto j : k)
#define sz(vct) vct.size()
#define all(vct) vct.begin(), vct.end()
#define sortv(vct) sort(vct.begin(), vct.end())
#define uniq(vct) sort(all(vct));vct.erase(unique(all(vct)), vct.end())
#define fi first
#define se second
#define INF (1ll << 60ll)
typedef unsigned long long ull;
typedef long long ll;
typedef ll llint;
typedef unsigned int uint;
typedef unsigned long long int ull;
typedef ull ullint;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
typedef pair<double, int> pdi;
typedef pair<string, string> pss;
typedef vector<int> iv1;
typedef vector<iv1> iv2;
typedef vector<ll> llv1;
typedef vector<llv1> llv2;
typedef vector<pii> piiv1;
typedef vector<piiv1> piiv2;
typedef vector<pll> pllv1;
typedef vector<pllv1> pllv2;
typedef vector<pdd> pddv1;
typedef vector<pddv1> pddv2;
const double EPS = 1e-8;
const double PI = acos(-1);
template<typename T>
T sq(T x) { return x * x; }
int sign(ll x) { return x < 0 ? -1 : x > 0 ? 1 : 0; }
int sign(int x) { return x < 0 ? -1 : x > 0 ? 1 : 0; }
int sign(double x) { return abs(x) < EPS ? 0 : x < 0 ? -1 : 1; }
struct UnionFind {
int n;
vector<int> u;
UnionFind(int n) : n(n) {
u.resize(n + 1);
for(int i = 1; i <= n; i++) {
u[i] = i;
}
}
int find(int k) {
if(u[u[k]] == u[k]) return u[k];
else return u[k]=find(u[k]);
}
void uni(int a, int b) {
a = find(a);
b = find(b);
if(a < b) u[b] = a;
else u[a] = b;
}
};
struct Area {
ll x, y, R;
bool isIntersected(Area other) {
return (x - other.x) * (x - other.x) + (y - other.y) * (y - other.y) <= (R + other.R) * (R + other.R);
}
};
void solve() {
ll N;
cin >> N;
vector <Area> ar(N + 1);
UnionFind uf(N);
for1(1, N + 1) {
cin >> ar[i].x >> ar[i].y >> ar[i].R;
}
for1(1, N + 1) {
for1j(i + 1, N + 1) {
if(ar[i].isIntersected(ar[j])) {
uf.uni(i, j);
}
}
}
set <int> s;
for1(1, N + 1) {
s.emplace(uf.find(i));
}
cout << s.size() << "\n";
}
int main() {
ios::sync_with_stdio(0);
cin.tie(NULL);cout.tie(NULL);
int tc = 1; cin >> tc;
while(tc--) solve();
}