2.5 KB | 2580 chars
/*
[13172: Σ](https://www.acmicpc.net/problem/13172)
Tier: Gold 4
Category: math, number_theory, exponentiation_by_squaring, modular_multiplicative_inverse, flt
*/
#include <bits/stdc++.h>
using namespace std;
#define for1(s, e) for(int i = s; i < e; i++)
#define for1j(s, e) for(int j = s; j < e; j++)
#define forEach(k) for(auto i : k)
#define forEachj(k) for(auto j : k)
#define sz(vct) vct.size()
#define all(vct) vct.begin(), vct.end()
#define sortv(vct) sort(vct.begin(), vct.end())
#define uniq(vct) sort(all(vct));vct.erase(unique(all(vct)), vct.end())
#define fi first
#define se second
#define INF (1ll << 60ll)
#define MOD 1000000007
typedef unsigned long long ull;
typedef long long ll;
typedef ll llint;
typedef unsigned int uint;
typedef unsigned long long int ull;
typedef ull ullint;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
typedef pair<double, double> pdd;
typedef pair<double, int> pdi;
typedef pair<string, string> pss;
typedef vector<int> iv1;
typedef vector<iv1> iv2;
typedef vector<ll> llv1;
typedef vector<llv1> llv2;
typedef vector<pii> piiv1;
typedef vector<piiv1> piiv2;
typedef vector<pll> pllv1;
typedef vector<pllv1> pllv2;
typedef vector<pdd> pddv1;
typedef vector<pddv1> pddv2;
const double EPS = 1e-8;
const double PI = acos(-1);
template<typename T>
T sq(T x) { return x * x; }
int sign(ll x) { return x < 0 ? -1 : x > 0 ? 1 : 0; }
int sign(int x) { return x < 0 ? -1 : x > 0 ? 1 : 0; }
int sign(double x) { return abs(x) < EPS ? 0 : x < 0 ? -1 : 1; }
ll gcd(ll a, ll b) {
return b > 0 ? gcd(b, a % b) : a;
}
ll inverse(ll a, ll n) {
ll r = 1;
while (n) {
if (n & 1) r = r * a % MOD;
a = a * a % MOD;
n >>= 1;
}
return r;
}
ll convert(ll a, ll b) {
ll inverted_b = inverse(b, MOD - 2);
return (a * inverted_b) % MOD;
}
struct Fraction {
ll child;
ll parent;
Fraction(ll c, ll p) {
this->child = c;
this->parent = p;
}
Fraction operator+(Fraction other) {
return {
((parent * other.child) % MOD + (other.parent * child) % MOD) % MOD,
(parent * other.parent) % MOD
};
}
Fraction operator/(ll a) {
return {
child / a,
parent / a
};
}
};
void solve() {
ll M;
ll S, N;
Fraction ans = Fraction(0, 1);
cin >> M;
for1(0, M) {
cin >> N >> S;
ans = ans + Fraction(S, N);
ll g = gcd(ans.child, ans.parent);
ans = ans / g;
}
cout << convert(ans.child, ans.parent);
}
int main() {
ios::sync_with_stdio(0);
cin.tie(NULL);cout.tie(NULL);
int tc = 1; // cin >> tc;
while(tc--) solve();
}